5 research outputs found

    Simulated Associating Polymer Networks

    Get PDF
    Telechelic associating polymer networks consist of polymer chains terminated by endgroups that have a different chemical composition than the polymer backbone. When dissolved in a solution, the endgroups cluster together to form aggregates. At low temperature, a strongly connected reversible network is formed and the system behaves like a gel. Telechelic networks are of interest since they are representative for biopolymer networks (e.g. F-actin) and are widely used in medical applications (e.g. hydrogels for tissue engineering, wound dressings) and consumer products (e.g. contact lenses, paint thickeners). In this thesis such systems are studied by means of a molecular dynamics/Monte Carlo simulation. At first, the system in rest is studied by means of graph theory. The changes in network topology upon cooling to the gel state, are characterized. Hereto an extensive study of the eigenvalue spectrum of the gel network is performed. As a result, an in-depth investigation of the eigenvalue spectra for spatial ER, scale-free, and small-world networks is carried out. Next, the gel under the application of a constant shear is studied, with a focus on shear banding and the changes in topology under shear. Finally, the relation between the gel transition and percolation is discussed

    Percolation of Immobile Domains in Supercooled Thin Polymeric Films

    Get PDF
    We present an analysis of heterogeneous dynamics in molecular dynamics simulations of a thin polymeric film, supported by an absorbing structured surface. Near the glass transition "immobile" domains occur throughout the film, yet the probability of their occurrence decreasing with larger distance from the surface. Still, enough immobile domains are located near the free surface to cause them to percolate in the direction perpendicular to surface, at a temperature near the glass transition temperature. This result is in agreement with a recent theoretical model of glass transition

    Nitrogen dynamics in cropping systems under Mediterranean climate: a systemic analysis

    Get PDF
    International audienceWorldwide, Mediterranean cropping systems face the complex challenge of producing enough high-quality food while preserving the quantity and quality of scarce water for people and agriculture in the context of climate change. While good management of nitrogen (N) is paramount to achieving this objective, the efficient strategies developed for temperate systems are often not adapted to the specificities of Mediterranean systems. In this work we combined original data with a thorough literature review to highlight the most relevant drivers of N dynamics in these semiarid systems. To do so, we provide an analysis at nested scales combining a bottom–up approach from the field scale with a top–down approach considering the agro-food system where cropping systems are inserted. We analyze the structural changes in the agro-food systems affecting total N entering the territory; the contrasting response of yields to N availability under rainfed and irrigated conditions in a precipitation gradient; the interaction between N management and climate change adaptation; the main drivers affecting the release of Nr compounds (NO3-, NH3, NO, N2O) as compared with temperate systems; and finally, the behavior of N once exported to highly regulated river networks. We conclude that a sustainable N management in Mediterranean cropping systems requires the specific adaptation of practices to the particular local agroenvironmental characteristics with special emphasis on water availability for rainfed and irrigated systems. This approach should also include a systemic analysis of N inputs into the territory that are driven by the configuration of the agro-food system
    corecore